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GAS-DYNAMIC BANK CONTROL OF A-SPACECRAFT

IN THE ATMOSPHERE

R. V. Studnev (USSR)

ABSTRACT>. The Pontryagin max,--
imum principle is used to solve the
problem of optimal spacecraft attitude
control in the atmosphere. The inf;-
luence of aerodynamic forces on the
spacecraft stability is considered.

At the present time one of the most timely problems is that /482*

of how to control a spacecraft, possessing aerodynamic quality,

during its atmosphere entry. Numerous papers discuss the atmos-

jpheric re-entry by a spac'ecraft.which is balanced in.the' sense]

that its angle of attack is constant, and whose trajectory is

controlled by changing the bank angle [1, 2]. In this connec-

tion a problem arises of estimating the dynamic possibilities

of the motion of a spacecraft relative to its center of mass

when compensating for perturbations of the angle of attack and

slippage (a, 6), and controlling the bank angle. There are many

articles devoted to an analysis of the optimal control of a

spacecraft's attitude in a vacuum [3 - 6]. A majority of these

problems are solved using the Pontryagin maximum principle

[7, 8]. Below the maximum principle is used to solve a simpli-

fied and analogous problem of tihe optimal spacecraft attitude

control in the atmosphere. The problem is a little more com-

plicated than the problem of motion in a vacuum, since it is

necessary to consider the influence of the aerodynamic forces

on the stability of the craft.

*Numbers in the margin indicate pagination in the original
foreign text.
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1. Equations of Motion of a Spacecraft Relative to

its Center of Mass During Atmosphere Entry

The motion of a spacecraft relative-to-its center of mass

will be considered approximately by neglecting the interaction

of the motion of the center of mass. It will also be assumed

that, during the time it takes for the bank turns and compensa-

tions of deviations in a and B to be completed, the parameters

of motion of the craft (V, q) change very little and the equa-

tions of motion may be considered to have "frozen" coefficients.

Finally, the motion of the craft relative to its center of mass

will be assumed to be so slow that it will be possible to neglect

in the equations of motion the nonlinear terms such as

Under these assumptions, the equations written relative to

the principal central axes of inertia (OX1Y1Z1) (Figure 1) will

have the form

(P = lklza + U,, a + UZ,

,; = "'V + UV, 3 = cos co *oV + sin cO ,i (1.1)

(o, = 'I + i- , r = cos CI., - sin.o, c.,, (1.2)

where ao is the balancing angle of attack of the spacecraft,

a0 = const); ux, uy, uz are the moments from the control surfaces

divided by the corresponding moments of inertia.

In Equations (1.1) and (1.2) only the moments of the aero-

dynamic stability of the craft Aave been retained, since at

hypersonic speeds the effect of!the aerodynamic damping may be

neglected. Equations (1.1) and (1.2) imply that the equations

of the three-dimensional motionjof a spacecraft can be separated

into the equations of longitudinal and lateral motion, (1.1)

and (1.2), each of which may be:studied separately.
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Let us consider the equations of the lateral motion of a /483
spacecraft (1.2). Let us transform these equations in such a

way that the banking motion (rotation about the velocity vector

V) and the yawing motion (variation of the angle 8) of the craft

will be separated. Let us multiply the first and second equa-

tions in (1.2) by cos a0 and sin a0, respectively, and add them

together. This will produce an'equation in Qu. When they are

multiplied by sin a0 and cos a0, respectively, and added to-

gether, we obtain an equation in f- :

h, = a+(O' u,, r= Qi. (1-3)

In Equations (1.3) we use the following notation:

, = cos a, O)U +sin co,, (1.4)
Q~ = cosa (9-)x i--sin¢ou

o = U'lCOs a, + MR sina0,
(1.5)

t, = .-u cosa - :/T Isin ao;
t, = ux cos ao -- t sin 1c,;

i,= C, COSO a+ -Usinao,.
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Equations '(1.3) imply that the motion of a spacecraft-along the

angle B does not depend on the angle y and the control uy.

Let us consider a-choice--o-f -the s-urfaces-cont-rolling ux, uy,

such that uy and up will be independent. This can be accomplished

either by a coordinated deflection of the aerodynamic surfaces

(ux, uy), or by a special orientation of the control jet engines

in the case of gas-dynamic control of the spacecraft.

Let us explain why it is necessary for the spacecraft to

position the control jet -engines in such a way that one pair will

produce the moment uy alone, and the second pair - the moment

up alone.

A control jet engine of thrust P1 whose vector lies in the

plane parallel to the plane OY1Z 1, placed at the tail of the

craft at the angle 41 to the OZ1 axis, produces reduced moments---

relative -to the OX1 and OY1 axes that are given by the formulas

(Figure 2) --
_ v P, = 2 sin pal2 PI co (1*7): 1] - (1.7)

where Zx, Zy are the distances of one control jet engine to the /484

OX1 and OY1 axes, respectively; Ix, Iy are the principal moments

of inertia of the spacecraft relative to the OX1 and OY1 axes.

Let the angle at which the control jet engine is placed,

$1, be found from the condition that uy 0 O for P1 # 0. Sub-

stituting the expressions in (117) in Equations (1.6), and

equating the first relation in (1.6) to zero, we obtain the

following conditionfor 

.P-=aictg(o t, o) (-.8)-
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With such a choice of ~1 the control of up is given by the

formula

2P, u : tI'P = .

os \ l. u .. ( 1.9_ )

In the particular case whenl x1 /lx~I - .

the expression for u, simplifies ir_. _,.

2Pil Yl

Similarly, from the condition

u,_= 0,1, we find the orientation of so

the second pair of control jet

engines (Figure 2)

'P2=-Iv artcg ( I- ) ( 1 . Figure 3

Equations (1.8) and (1.11) imply that in general the control-jet-,

engines are not oriented orthogonally to each other, but instead

make an angle P - -T,] whose tangent is given by

2 [
tg (p,-- 9)= siTi2° 1xt , - - ' (1.12)

If i,jI/J I ,,= 1], then the control jet engines producing the moments

Uy and u, are orthogonal [tPl- T2) = 901°]. Figure 3 is an example

of the plot of (!P -P2)] versus l1,,IXlixjii for 'o- 30o.)

Similar transformations can be performed when analyzing

the aerodynamic control. It ismeasy to show that for yaw con-

trol up the moments ux and uy must be related by
T. ..

-u~fuv= ti\ (1.13)

where 

(1.143



For bank control, ux and uy must be related by (/485

zs, L.- 9 - C I tg , (1.15)

where

j=21 o 2u (1.16)

For convenience in analysis and to obtain more general

results, we shall transform the,equations to a dimensionless

form. We introduce the dimensionless time T

dr= I/-a dt. (1.17)

Let us change the scales of the independent variables by taking

into account the restriction on,the control of u~ and uy

|u ll Ui, j. I UYl (1.18)

introducing for this purpose the following notation

=- a R3 = %R W.ff

* Gylu:,l Q nY l-Go g (1.19)

t(-- n a)

Considering the notation in (1.19), the equations of motion will

become

Q = _ f + UY

= -K54' I ii', I < (1.20)

~" = Q-, I U |l<. 31.21)L2-L

We shall now proceed to analyze the optimal control of a

spacecraft using Equations (1.2'0) and (1.21).
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2. An Investigation of the Form of p-Trajectories

In accordance with the Pontryagin maximum principle [7, 8],

we write a function

, It - P P4 + P3pu + PP3 3y + P4 YI (2.1)

Let us separate the terms in'H that contain controls

,,l = po + p 3 UYj. (2.2)

From the condition that H be maximized relative to uj, it follows

that the controls ul-and uy are in the form of relay functions

that can be found from the condition

du- sign pI,By=sign p, (2.3)

In order to find the optimal control, it is necessary to

find the solution of a system of conjugate equations pi'= - OH/IOXi.

Let us construct a system of conjugate equations and con- /486

sider the possible forms of solutions to this system. The con-

jugate equations have the form

PI = - P2, p 2 = p - p; (2.4)

P3 = - P4, P4; 0, (2.5)

The equations in p3' and P4' can be easily integrated to

(2.6)p3 - - C+t + C3, FP C4 J (2.6)

The Solution (2.6) for p3 (T) and the Condition (2.3) imply that

in general the control of uy may change the sign no more than

once.
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The conjugate variables Pl; ... , p4 can be determined by

taking into account the boundary conditions imposed on the real

variables. Since the conjugate equations are linear and the

control functions have a relay form, the conjugate variables

can be determined up to an arbitrary constant factor. In this

connection, (2.4) implies that the form of the solutions for P1

and P2 does not depend on the coefficient a, since a change of

that coefficient is equivalent to a change of scale of the vari-

able p3. Only the solution for the real variables depends on
*

the coefficient a

Let us consider in more detail the solutions for the con-

jugate variables Pl, P2. Considering the form of the solution

for p3 (T), we use a transformation of variables

P1 .P1 C3 -+ C4 5YT, P2= P2- (2.7)

to-obtain the-equations for pl and p~, whichcan be easily- --

integrated
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p I= - P2, P = P , (2.8)

A solution of this system of equations in the phase plane PlP2

represents a family of concentric circles (FigureT 4a).

In the analysis of the optimal control, it is necessary

that only the function pi (T) vary with time (the values of the

function P2 are unimportant). Equations (2.7) and (2.8) imply

that a change of the variables Pi and P2 in the phase plane may /487

be represented as a composition,of two motions: the motion of

the figurative point along a circle and a translation of the

circle (Figure'4b). The possible forms of such curves are illus-

trated in Figure 5. Let us note certain properties of our solu-

tions for the conjugate variables (p1, P2)- It can be s.hown

that the phase curves are symmetric about the axis P1 = const

passing through points at which p,1/0p2 =- .

To prove this, let us consider the projections of the velo-

city of the figurative point onto the vertical (Opl) and hori-

zontal (OP2) axes. These projections are equal (Figure 6):

Vp,=- Rcos (p T VP= - sinq, (2.9)

where R is the radius of the circle PI

of the p-trajectory; 2a/T is the

speed of translation of the center

of the circle. 1 t
Making use of the expressions

for the velocity components Vpli and

Vp2, we obtain the derivative dpi/p :

p2'

api - cos (2.1 )
aP2 - +- Fsill g *1 

8 P2~ ~Figure 6
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Equation (2.10) implies that the derivatives Op~1/p 2/ for

equal (but different in sign) values of t have equal values that

are different in sign. In particular, the derivative. OPj/Pz21

vanishes if q is given by

q' = -F- are cO cosT 1 (2.11)

and tends to infinity for ~ = O0and 1 = 1800. This type of varia-

tion of the derivatives indicates that the phase curve has an

axis of symmetry corresponding to the angle c = 0.

The time spent by the figurative point in commuting between

the points of tangency of the phase curve with the generator

P2 = const is equal to the period of the point going around the

circle (i.e., 27), and the distance between the points of tan-

gency is identical for both generators (Figure 5b).

In a region where the direction of motion around the circle

and the displacements of the center of the circle are in oppo-

site directions, the phase curve p1(P2) may have loops. However;

in the case when the speed of translation of the center of the

circle is greater than the speed of the figurative point in its

movement around the circle, any loops in the phase trajectory

disappear.

Let us estimate the time needed for the figurative point /488

to go around a loop (see Figure 6). This can be found from

the condition that the time Tl,;during which the figurative

point moves along an arc of the circle, be equal to the time T2

of the translation motion of a point symmetrically located on

the circle.

10



We have

1 = 2Sow T2 a s FT. (2.12)

The condition T1 = T2 yields an expression for the radius

of the circle R = R/a in terms of 0 and T

,2po 1 (2.13)
T sill po

3. An Analysis of the Time-Optimal Bank Control

of a Spacecraft

We proceed now to analyze the optimal bank control of a

spacecraft. The motion of the craft relative to its center of

mass will be considered in the phase planes QTl/ and V2r;.. The

equations of motion (1.20) imply that, for a proper choice of

the control organs, the yawing motion of a spacecraft does not

depend on its banking motion, and may be analyzed separately.

Let us consider the yawing motion of the craft

Q' -P+ ii'=~ Q(3.1)

For 0i =0 the motion of the craft in the phase plane II can be

represented by a circle with the center at 0. The radius of

the circle depends on the initial conditions (O)
t
and Q(0):'

I ?=- (0)2 ' Q(o).1The figurative point goes clockwise around the
circle, making a full revolution during Tz= 2An The motion of

the spacecraft in the case of the relay control iui= =11 can be

represented in the phase plane by circles with centers moved

along the Opi' axis by + and - l,!respectively (Figure 7a).

11



1 1,J

Figure 7

The banking (y) motion of the craft in general, when a+;0,I
depends on its yawing motion and on the control u

Y

T=.2- , = jr, (3.2)

In the case when , 0; the banking motion of the spacecraft

in the phase plane is described by a parabola for -, 0+ Olor a

straight line 'Q7= constl for i -- 01 (Figure 7b).

Let us consider the problem of the time optimization of /489

spacecraft control, assuming that all variables are initially

set to zero

(0) = Q (0)= (0)= o, (0) =O (3.3)

and such that the craft will be rotated by an angle ~jOlduring

a minimum time.T and will be brought at the end of the turn

back to zero conditions !

i(Ti:--- ~- (T) )-- (T)=0, ° (T)= (3.4)

Such a system of boundary conditions must be satisfied by analyze.

ing a simultaneous solution of the equations of motion (3.1)

and (3.2) for a relay control of u.:and u¥, which'can be'deter-

mined taking into account the solutions of the system of conju-

gate equatioqrns (2.4) and (2.5).

12



The optimization condition implies that the control of Up

is linear and determined by the variation of the sign of the

conjugate function P1 (T). Figure 5 implies that the function

P1 (T) may either-have-two-segments with different signs (Fig-

ure 5c) (two-pulse control), or four segments with different

signs (four-pulse control) (Figure 5a, b). Three segments wit'h

different signs are also possible.

Let us consider a symmetric bank and yaw control of a space-:

craft. An analysis of the actual motion of a spacecraft rela-

tive to the anglej implies that, in order for the boundary

conditions (3.3) and (3.4) to be satisfied when T is not a

multiple of 27, it is necessary that more than two pulses be

applied.

Figure 8 shows

an example of the

motion of a space-

craft in the phase

plane 'BPO,, that

satisfies the bound-

ary conditions of

the problem. It

will be shown that

it is possible to

construct a solu- Figure'8

tion for the conju- i

gate variables pi (T) and P3 (T), and consequently the control

is indeed optimal.

The solution for the conjugate variable p3 (T) is a linear

functio'n of time. Here we can assume that p3(0) = l/o.l; then

13
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p3 (T) P3 (T) 2 (3-5)

The function p3 (T) changes sign at IT T/2,1 and the control uy /490

changes its sign-a-t--the--same time-(Figure- 8b):-

By specifying the function'p3 (T), we determine the location

of the center of the circle P1 (P2 ), in particular P1 = - 1

for T = 0, and P1 = + 1 for T =iT.

An analysis of

the actual motion

of a spacecraft also ip , , 

gives us times at

which the second t
pulses (Figure 8c) ' 1f
are applied. These

pulses correspond to - ,

a change of the

variable pi (T) ' V X_

along the loop bcd Figure 9

(Figure 8a). Making

use of Equation (2.13)

and the known time TI/2.-P:, we find the radius of the circle R in

order to solve the conjugate equations. By adding to the angle

$0, which is proportional to the duration of the second and
third pulses, the angle '1, which is proportional to the duration

of the first and fourth pulses,lwe obtain the initial position

of the figurative point on the circle pi (P2 )'

Using the results obtainedlin Section 2, it is easy to show

that a change in P1 (T) agrees with the required change of the

control U~, and consequently, the optimal control, satisfying

the boundary conditions (3.3) aid (3.4), has been found.



Figure 10

As the angle of .

turn, yo, increases, r

so does the duration 

of the transition ' I

process T, and so do ! 

the durations of the

second and third . I Ur

pulse. For a certain

value of the duration i I __

of the transition Figure 11

process T, the dura-

tions of the second and third pulse are maximum, and begin to

decrease as T continues to increase (Figures 9 and 10). For

Y0, corresponding to -(T,T),1 (where n is an integer), the control

is an extremum and is accomplished with two pulses (Figure 11).

When yo continues to increase (increase of T), the control is

again accomplished with four pulses (Figure 12).

An analysis of the three-pulse control (Figure 13), satis-

fying the boundary conditions (!3.3) and (3.14), shows.that. -

even though this control is feaslible - it is not time-optimal.

15
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Figure 12 Figure 13

This is due to the fact that, in addition to an additional In-_

crease of yO due to B, also the-banking angular velocity is de-

veloped, whose compensation results in a loss of the gain obtaineld

and deprives the motion of its optimality. In all the above

cases (Figures 8 - 12)-, the motion of the spacecraft along the

angle B is symmetric, i.e.,

TV2 T

S ad= - r- (3.6)
- o T12

As a result, the additional banking angular velocity within

the time interval [0, T/2], due to the slippage, is compensated

within the time interval (T/2, T) by a further increase in B. /492

Due to this fact, the time intervals during which the positive

and negative control U~ is exerted are identical.

In order to find a relationship between yo and the minimum

duration of the transition process T, let us transform Equations

(3.2). Let us represent fy andiy as sums of two terms

Y. + Q + y°3.7)

16



and let the variables y. 1 2, g, and g~,.be found from the equations

(3.8)

= .p, -- ; (3.9)
5.4 = 1 ly, T2 = QYI

Equations (3.8) imply that

(3.10)
d (T) = * F dr, l (T) = *, 3 f3d dr. (3.10)

0 0 _

Above,_an analysis of ('),_ has shown that 0dr:=-- As a result 0
Equations (3.9) may be solved separately, without considering

Equations (3.8). Thus the solution for 7o(T)} can be written in

the form i
2 T

To(T)= 2( r± , + J. S(T, T)dt (3-11)

jThe Relation (3.11) permits us to find the dependence ofjO on th|0The Relation (3.11) permits us to find the dependence of[(y on th
1

duration of the transition process T.

The function I(T,,T)I, appearing in the relation, depends on

the time T since the control up also depends strongly on it.

Using Equation (3.11), we can easily find the final value

of the bank angle yo that corresponds to the two-pulse control

(Figure 11)

7 (3.12)

In general, if the time T is a multiple of 41 r, then the expres'-

sion for Yn can be written in the form

(2n =)(t2 (2 + G)(3.13)
( 3.13 )

17



where n is the number of periods of the natural oscillations in

B within one half of the time interval during which the transi-

tion process takes place.

In spite of the simplicityof the equations of motion,

finding yO(T) is a very difficult operation. Let us write down

certain necessary relations. An analysis of the geometry of

motion in the phase plane (Figure 14) gives the following

expressions for the basic parameters:

? -= 5 -4 cos () I (3.14)
sill *0

'-- cos I -2 /1 - cos '1pl=a2 VI - os(pil

COS (PIi I- co - Cos (c i (3.15)

where 1 is the angle which is proportional to the duration of

the first (fourth) pulse; C 2 is the angle which is proportional

to the duration of the second (third) pulse.

Figure 15 gives the plot of 

((cpl)], and Figure 16 the plot of'

V2g/'~ 'versus] 1. Using these l

plots we can find 0o(T)
/
for each

value of a

Let us estimate the gain in

time (AT), due-to the simultaneous Figure 14

bank and yaw control as compared

with the optimal control of the!

bank angle alone. The time (To+-t AT) needed to turn a spacecraft

by an angle 'l + T2l in the case pof an optimal control of the

bank angle alone is given by

,1+,,2 , ,,')' (3.17)

18
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where yl is the bank angle achieved as a result of bank control

during a time-optimal maneuver performed during a time TO; y2

is the bank angle obtained during a time optimal slippage maneu-

ver; To is the duration of the maneuver in the case of the time-

optimal bank and yaw control.

From (3.17), we obtain a nonlinear dependence of the time

gain on To and y2

At=- To+ 3fT2+i2r2 . (3.18)

4. Time-Optimal Compensation of the Initial Yaw and

Angle-of-Attack Deflections of a Spacecraft

Let us consider the problem of the time optimization of the /494

compensation for the yaw deviation of a spacecraft. As _iefore,

we shall analyze the equations 6f motion

..... -.......... IL~ ~)= (4.1)
°D = -~' + ~'~' ' = ~ (4.2)

with-theboundary conditions

with the boundary conditions

19
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4 (2) = 30, () = ( °) = P (() = 0,

KQ, (T)-v (T)-Y (=)- r (T) - O.-

The equations of motion (4.1) and (4.2) imply that the motion

along the angle B may be discussed separately from the motion

along the angle y. Thus, the problem of compensating for the

initial deflection in the angle!i can be subdivided into the

problem of the optimal yaw control of the craft and the problem

of compensating for the accumulated bank error.

The solution of the first problem is known; it is considered

in a number of papers. Moreover, its solution has been carried

to a stage involving a synthesis of a system realizing the opti-

mal control algorithm [7].

However, the complete problem of the optimal control of B

and y has not yet apparently been studied.

It should also be noted that the problem of the time-optimal

compensation of a deviation in a coincides with the problem of

compensating a deviation in B [see Equations (1.1) and (1.2)],

and its solution, as noted above, is known.

It is easy to show that the problem of the optimal compen-

sation of deviations in B and y does not have a unique solution.

This is due to the fact that the optimal control of B does not

depend on the motion of the spacecraft along the angle y and

has its "characteristic" time of the duration of the transition

process. At the same time, a control of y depends on the yawing
i

motion of the spacecraft. In the case when the bank control

is of little effectiveness and the transition process in y is

slower than-the one in B, the control is unique. - In the-case

when the effectiveness of Uy ist high, deviations in the angle y
Y

20



may be compensated for in many different ways provided that-the-

process stops at a time determined by the motion along S. Exam-

ples of those types of motion are illustrated in Figu rel17.

Let us consider in somewhat greater detail the case when the'

solution of the problem is unique - namely, when the control of

y is of little effectiveness and the process of compensating for

perturbations in y due to the hawing motion of the spacecraft

takes a longer -time than the process of compensating for the

motion along 3.

Similarly to Equation (3.7),, let us represent a change in y

as consisting of two components: "forced", (y1), caused by a

perturbation in ~, and "compensating", (Y2), due to the bank

control

2 (4.4)

The solution for y has the form.

Y^rJ- al + 7r2-| (14.6)

Since in this case the transition process involving ~ ends /495

earlier than the process involving f(T< T,)I, the solution of

Equations (4.4) can be used as the initial conditions for Equa-

tions (4.5), and be written in the form

To T.

rT(2)= a d($ S Fdrlt-T- , S dT) = ;( - TIl), (4 .7)
0 0

02 Odr = .o (4.8)
0

where I = I ds, I2 = dTdTd.
: n ~0

21



Figure 17 Figure 18

In Equation (4.7) the integral I1 accounts for the varia-

tion of y within the time interval (0, TB), due to the initial

conditions on y2' (0') (4.8). Thus, the problem has been reduced

to the well-known problem of an independent bank control of the

motion of a spacecraft. An exarple of a phase trajectory is

given in Figure 18a, which gives the plots of y2 (T) and Yl (T).

As we know, the time-optimal bank control is achieved by

means of two pulses (Figure 18b) whose duration differs by AT.

The latter can be determined from the condition that the initial

angular velocity y2' (0) be compensated for:

2A = 2(0), = (4.9)

The total duration of the bank transition process Ty is

found from the condition that the total bank deviation, due

to a motion in B, be compensated for:
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=T2 [,+ (T,- - (4. 10)

Ty can be found from

T=, 2 [AT +i2 ()+2*| (4.11)
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